Extremal trees with fixed degree sequence for atom-bond connectivity index

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Second Atom-Bond Connectivity Index

The atom-bond connectivity index of graph is a topological index proposed by Estrada et al. as ABC (G)  uvE (G ) (du dv  2) / dudv , where the summation goes over all edges of G, du and dv are the degrees of the terminal vertices u and v of edge uv. In the present paper, some upper bounds for the second type of atom-bond connectivity index are computed.

متن کامل

On the extremal total irregularity index of n-vertex trees with fixed maximum degree

In the extension of irregularity indices, Abdo et. al. [1] defined the total irregu-larity of a graph G = (V, E) as irrt(G) = 21 Pu,v∈V (G) du − dv, where du denotesthe vertex degree of a vertex u ∈ V (G). In this paper, we investigate the totalirregularity of trees with bounded maximal degree Δ and state integer linear pro-gramming problem which gives standard information about extremal trees a...

متن کامل

A Note on Atom Bond Connectivity Index

The atom bond connectivity index of a graph is a new topological index was defined by E. Estrada as ABC(G)  uvE (dG(u) dG(v) 2) / dG(u)dG(v) , where G d ( u ) denotes degree of vertex u. In this paper we present some bounds of this new topological index.

متن کامل

Efficient computation of trees with minimal atom-bond connectivity index

The atom-bond connectivity (ABC) index is one of the recently most investigated degree-based molecular structure descriptors, that have applications in chemistry. For a graph G, the ABC index is defined as ∑ uv∈E(G) √ (d(u)+d(v)−2) d(u)d(v) , where d(u) is the degree of vertex u in G and E(G) is the set of edges of G. Despite many attempts in the last few years, it is still an open problem to c...

متن کامل

On generalized atom-bond connectivity index of cacti

The generalized atom-bond connectivity index of a graph G is denoted by ABCa(G) and defined as the sum of weights ((d(u)+d(v)-2)/d(u)d(v))aa$ over all edges uv∊G. A cactus is a graph in which any two cycles have at most one common vertex. In this paper, we compute sharp bounds for  ABCa index for cacti of order $n$ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2012

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1204683x